Кванты, шумы, компьютеры…

Ученые НИТУ МИСИС повысили эффективность симуляции зашумленных квантовых цепочек с помощью классических компьютеров

Исследователи Университета МИСИС, Российского квантового центра (РКЦ), Московского физико-технического института (МФТИ) и Математического института им. В.А. Стеклова выяснили, как повысить эффективность симуляции квантовых вычислений на классических компьютерах в условиях шумов. Для решения этой задачи ученые рассмотрели так называемое квази-вероятностное представление квантовой механики, в котором поведение квантовых объектов может быть описано с использованием “отрицательных вероятностей” (квази-вероятностей).

В квази-вероятностном представлении возможность появления отрицательных вероятностей является единственным отличием квантовых систем от стохастических классических систем. Чем больше отрицательных элементов в квази-вероятностном описании реализации квантового алгоритма, т.е. чем больше его негативность – тем, в свою очередь, сложение просимулировать этот алгоритм на классическом компьютере.

Благодаря новой разработанной технике подбора наиболее подходящего “базиса” – так называемого обобщенного фрейма – для построения квази-вероятностного описания конкретной квантовой цепочки авторы продемонстрировали возможность снижения негативности этой цепочки, что упрощает её классическую симуляцию.

«Исследование включает анализ квантовых цепей, в которых присутствуют шумные однокубитные и двухкубитные квантовые вентили. Они аналогичны логическим вентилям в обычных компьютерах, но могут оперировать квантовыми состояниями, включающими в себя состояния квантовой суперпозиции и запутанные состояния. В реальных современных квантовых процессорах эти вентили подвержены различного рода шумам, что приводит к разрушению обрабатываемой квантовой информации», — рассказал Алексей Федоров, директор Института физики и квантовой инженерии НИТУ МИСИС, руководитель научной группы «Квантовые информационные технологии» РКЦ.

Минимизация общей негативности проводилась для различных комбинаций размерности фреймов и типа вентилей, что позволило выявить оптимальные параметры для различных уровней шума. С помощью алгоритма оптимизации были рассмотрены однокубитные фреймы различных размерностей, соответствующих возможным трехмерным правильным многогранникам (тетраэдру, кубу, октаэдру и т.д.). Каждый многогранник рассматривался внутри трехмерного пространства параметров Блоха, а его вершины служили точками для построения однокубитных фреймов. Авторы статьи показали, что переход к многогранникам с большим числом вершин – увеличение размерности фрейма – обеспечивает снижение негативности в соответствующем квази-вероятностном описании цепочки. Полученные результаты сравнивались с альтернативной методикой снижения негативности за счет объединения нескольких вентилей в один (“gate merging”). Выяснилось, что при наличии шумов увеличение размерности фреймов приводит к более эффективному снижению негативности по сравнению с объединением вентилей. Результаты исследования опубликованы в научном журнале Physical Review A (Q1).

«Результаты исследования важны для эффективной классической симуляции квантовых устройств текущего поколения, операции в которых подвержены шуму. Мы показали, что увеличивая размерность фреймов, на которых построены квази-вероятностные представления, можно значительно снизить негативность, тем самым ускорить классическую симуляцию квантовых вычислений. В дальнейшем мы планируем использовать техники квази-вероятностной симуляции для повышения эффективности квантовых вычислений и возможности исполнения больших квантовых цепочек на текущих квантовых компьютерах», — поделился младший научный сотрудник группы «Квантовые информационные технологии» РКЦ Денис Куликов.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 19-71-10091), а также в ходе реализации стратегического проекта НИТУ МИСИС «Квантовый интернет» по программе Минобрнауки России «Приоритет-2030».

Об университете

Университет науки и технологий МИСИС – ведущий вуз страны в области создания, внедрения и применения новых технологий и материалов. Опираясь на вековые традиции признанных в России и мире научных школ, современные образовательные технологии, университет ставит перед собой задачу внести максимальный вклад в развитие экономики за счет прорывных разработок и качественной подготовки специалистов. В научно-исследовательской деятельности Университет МИСИС концентрируется на таких приоритетных направлениях, как металлургия, горное дело, материаловедение, квантовые технологии, биоматериалы и биоинженерия, альтернативная энергетика, аддитивные и информационные технологии.

В вузе действует 45 научно-исследовательских лабораторий и инжиниринговых центров мирового уровня, в которых работают ведущие российские и зарубежные ученые. В состав университета входит 7 институтов и 6 филиалов – четыре в России и два за рубежом. В вузе более 23 000 обучающихся, 25% студентов – граждане 86 стран. Университет МИСИС сотрудничает более чем с 1600 крупнейшими компаниями России и мира – лидерами в своих отраслях. Официальный сайт вуза – https://misis.ru/

Похожие записи