Компания Qrator Labs, специализирующаяся на противодействии DDoS-атакам и обеспечении доступности интернет-ресурсов, приняла участие в Евразийском экономическом форуме, прошедшем в Вероне (Италия).
Здесь Qrator Labs обозначила ключевые направления использования технологий машинного обучения сегодня и в будущем.
В ходе сессии форума «Новейшие технологии для промышленной революции: хайп и реальность» технический директор Qrator Labs Артем Гавриченков рассказал о том, в каких областях уже сегодня может использоваться искусственный интеллект и машинное обучение для решения реальных задач бизнеса.
Анализ собираемой информации — это ключ к улучшению показателей любого бизнеса. Машинное обучение сегодня успешно применяется для анализа большого объема данных, стабильных во времени. Технологии machine learning помогают с отслеживанием периодичности происходящих событий и с поиском аномалий в стабильных событиях. Так, для оператора связи основным бизнес-показателем является объём Интернет-трафика. С помощью алгоритмов машинного обучения задача, например, поиска резких всплесков трафика решается достаточно просто.
Аналогичным образом может детектироваться большинство аномалий в любых бизнес-процессах, которые поддаются измерению. Для других типов бизнеса такими параметрами может быть число посетителей в единицу времени, количество покупок, заказанных доставок, оплаченных счетов, продемонстрированных рекламных объявлений, проведенных транзакций.
Видов подобных данных очень много, что усложняет ручное отслеживание, но все они обычно легко поддаются автоматическому анализу, и при выявлении аномалий в тех или иных показателях система высылает оповещения ответственным специалистам компании. Таким образом, задачи построения бизнес-процессов на основе продвинутого анализа данных предприятия серьёзно упрощаются.
В сфере информационной безопасности машинное обучение используется для прогнозирования рисков, анализа характерных паттернов легитимного поведения с целью своевременного выявления подозрительных активностей. Злоумышленники также не отстают: они осваивают новые технологии для поиска уязвимостей на сайтах.
Стоит заметить, что машинное обучение не всегда может использоваться для анализа инцидентов ИБ, поскольку зачастую они происходят непредсказуемо и не столь часто, чтобы можно было собрать статистику, достаточную для обучения системы.
«Машинное обучение стало распространенным инструментом во многих сферах, где требуется интеллектуальный анализ данных, – комментирует Артем Гавриченков, технический директор Qrator Labs. — Однако machine learning отнюдь не является «чудом» – это лишь математика и алгоритмы, доступные, в том числе, бесплатно, а потому интерес бизнеса и прикладных программистов к этому наиболее успешному направлению искусственного интеллекта будет расти и дальше. Можно ожидать появление алгоритмов, основанных на машинном обучении, и в сети, и, в том числе, встроенных в сетевые подсистемы телефонов и браузеров. Вследствие этого в грядущем будущем робот станет полноценным гражданином сети, и задача отличения человека от машины при доступе к сайту потеряет всякий смысл. Концентрироваться придется уже на выявлении аномального поведения, которое может быть присуще как роботу, так и живому человеку».
Основатель и генеральный директор Qrator Labs Александр Лямин отметил:«Евразийский экономический форум является ключевым событием Большой Евразии, от Атлантики до Тихого океана, участие в котором традиционно принимают крупнейшие российские компании, итальянские корпорации, политические деятели. Это знаковая площадка для целого ряда бизнес-активностей, в том числе для нашей компании, активно присутствующей на европейском рынке. Италия для нас – это чрезвычайно плодотворный источник технологического партнерства ввиду активного развития академической среды в этой стране. Экономический форум в Вероне предоставил нам отличную возможность внести свой вклад в развитие индустрии и рассказать бизнесу о новых технологических разработках, приводящих к революционным изменениям не только в экономике, но и в повседневной жизни каждого человека».
О компании
Qrator Labs – номер один в области противодействия DDoS в России (согласно отчету IDC Russia Anti-DDoS Services Market 2016–2020 Forecast and 2015 Analysis). Компания основана в 2009 году и предоставляет услуги противодействия DDoS-атакам в комплексе с решениями WAF (Web Application Firewall), организованными по технологии партнёрской компании Wallarm. Для эффективного противодействия DDoS-атакам Qrator Labs использует данные собственного сервиса глобального мониторинга интернета Qrator.Radar. Сеть фильтрации Qrator построена на узлах, расположенных в США, России, ЕС и Азии.